REPRESENTATION OF GENERALIZED GROUPS BY FAMILIES OF BINARY RELATIONS

BY

A. GINZBURG AND D. TAMARI

ABSTRACT

Binary systems defined by families of binary relations satisfying special properties are studied. The existence of so called near-groups or quasiassociative loops is established.

Introduction. Notations follow those in the preceding papers [8, 9]. Here particular binary systems defined by families of binary relations with their generalized multiplication are studied.

§1 treats symmetric f.o.b.r., partitions of $N \times N$ (all $r \subset N \times N$), and f.o.b.r. satisfying certain combinations of conditions determining special categories of b.s. §2 establishes the existence of so called *near-groups* [7] or *quasiassociative loops* [3] which are not groups, although they are defined by a slight modification [5, 6] of Brandt's well-known *normal multiplication table* (n.m.t.) for groups.

The principal results of this paper were published without proof earlier [3]. Applications to groups are studied in [4].

1. Symmetric families of disjoint relations and quasiregular partitions.

A. General properties

All R are assumed to satisfy the conditions

(1)
$$r_{1}r_{2} \neq \emptyset \Rightarrow \exists r_{3} \in R | r_{1}r_{2} \subset r_{3}$$
$$r_{1} \neq r_{2} \Rightarrow r_{1} \cap r_{2} = \emptyset (r_{1}, r_{2} \in R)$$

Every such R is single valued and satisfies

1. $r_a \cap d_N \neq \emptyset \Rightarrow a^2 = a$

2. a)
$$|r_a \cap | (r_e \cap d_N) \neq \emptyset \Rightarrow ea = a$$

b)
$$r_a / \cap (r_e \cap d_N) \neq \emptyset \Rightarrow ae = a$$

3. a) $x/x, x/y \in r_1, u/x \in r_2 \Rightarrow u/y \in r_2$ b) $x/x, y/x \in r_1, x/u \in r_2 \Rightarrow y/u \in r_2$

Received October 16, 1968.

4. In a n.m.t. with two identical couples of corresponding rows and columns one couple can be deleted, without change of the b.s.

B. Symmetric systems of relations R_s

DEFINITION. R is symmetric and denoted R_s , if

$$r \in R \Rightarrow r^{-1} \in R$$
 (symmetry).

By (1) it suffices to require

(2) $r \in R \Rightarrow (\exists r_1 \in R): r^{-1} \subset r_1.$

One denotes

$$r_a^{-1} = r_{a-1}.$$

Clearly $(a^{-1})^{-1} = a$, aa^{-1} is always defined, and

$$aa^{-1} = e \Rightarrow e^2 = e, a^{-1}e = a^{-1}, ea = a;$$

in particular, R_s has at least one idempotent element.

In R_s , A.3 generalizes to

$$x/y, x/z \in r_1, u/y \in r_2 \Rightarrow u/z \in r_2$$

(3)
$$x/z, y/z \in r_1, x/u \in r_2 \Rightarrow y/u \in r_2$$

This and property A.4 imply that all repetitions of elements in a row or a column of a n.m.t. of R_s can be eliminated; without limitation of generality one may restrict oneself to R_s of 1-1 relations.

Further simple properties of an R_s :

$$a^{2} = a \Rightarrow r_{a} \cap d_{N} \neq \emptyset, \ a^{-1} = a;$$

$$\exists b, ba = b \Rightarrow a^{2} = a, b^{-1}b = a; \ \exists b, ab = b \Rightarrow a^{2} = a, bb^{-1} = a;$$

$$a/b \in C, \ a^{2} = a \Rightarrow ab = b; \ b/a \in C, \ a^{2} = a \Rightarrow ba = b;$$

$$a/b \in C, \ a^{2} = a, \ b^{2} = b \Rightarrow a = b.$$

C. Symmetric complete systems of relations

 R_c will denote a complete R, i.e.,

$$r_1, r_2 \in R_c \Rightarrow r_1 r_2 \neq \emptyset.$$

An R_c which is also an R_s will be denoted by R_{sc} .

THEOREM 1. Every R_{sc} is an IP loop (loop with the inverse property); conversely, every IP loop can be represented by an R_{sc} .

Vol. 7, 1969

Proof. In an R_s , each of the six equalities

(4)
$$ab = c, a^{-1}c = b, cb^{-1} = a, b^{-1}a^{-1} = c^{-1}, c^{-1}a = b^{-1}, bc^{-1} = a^{-1}$$

implies the other five, as is obvious from the following extraction from the n.m.t.

$$\begin{array}{c}c & b\\a & b^{-1}\\a^{-1}c^{-1}\end{array}$$

Consequently, R_{sc} is a quasigroup.

By the properties in the previous section, R_{sc} has an identity 1 $(r_1 = d_N)$ and $aa^{-1} = a^{-1}a = 1$.

Thus R_{sc} is a loop.

Moreover, in an R_s

(5)
$$a/b \in C \Rightarrow a^{-1}(ab) = b; \ b/a \in C \Rightarrow (ba)a^{-1} = b$$

In R_{sc} , ab and ba exist. (5) is thus satisfied for all a and b and the axioms of an *IP* loop are fulfilled.

Conversely, let L be an IP loop with identity 1. For each $(a, b, c) \in T_L(a, b, c \neq 1)$ construct the "subtable"

с	Ь	1
а	1	b-1
1	a ⁻¹	c ⁻¹

The combination of all such subtables (e.g., by juxtaposition) into a larger table with the 1-s forming the diagonal, is a n.m.t. of an R_{sc} representing L.

D. Quasiregular partitions

DEFINITION. An R constituting a partition of $N \times N$ (in brief N^2) will be called a *quasiregular partition* (q.p.) $Q = Q_N$ of N^2 .

One denotes Q_c , Q_s , and Q_{sc} , respectively, a complete a symmetric, and a symmetric and complete q.p.

The simplest examples of q.p. are:

 $Q^{(0)}$ — every element of N^2 is a relation.

 $Q^{(1)}$ — the whole set N^2 is one relation.

Every Q contains idempotent elements, satisfies (3), and

The lattice of the q.p.

The class \mathfrak{Q}_N of all Q of N^2 constitutes a partially ordered system under $Q_1 \leq Q_2$, Q_1 finer than Q_2 , induced from the usual ordering of the class \mathfrak{P}_N of all partitions of N^2 .

 $Q^{(0)} = P^{(0)}$ is the smallest and $Q^{(1)} = P^{(1)}$ the greatest member of \mathfrak{Q}_N as well as of \mathfrak{P}_N .

LEMMA 1. The greatest lower bound in \mathfrak{P}_N of a family of q.p. $R = \bigwedge {\{Q_i\}_{i \in I}}$ is a q.p.

Proof. $R = \{r_j\}$ is a partition. In order to show that this partition is quasiregular one has to prove that $r_1r_2 \cap r_3 \neq \emptyset \Rightarrow r_1r_2 \subset r_3$.

Each $r_k = \bigcap_{i \in I} q_{ik}$ (k = 1, 2, 3) where $q_{ik} \in Q_i$ is the relation of Q_i containing r_k . Therefore, for all *i*:

$$r_{1}r_{2} \subset q_{i1}q_{i2}$$

$$r_{1}r_{2} \cap r_{3} \neq \emptyset \Rightarrow q_{i1}q_{i2} \cap q_{i3} \neq \emptyset \Rightarrow q_{i1}q_{i2} \subset q_{i3} \Rightarrow$$

$$\Rightarrow r_{1}r_{2} \subset \bigcap_{i \in I} q_{i3} = r_{3}.$$

THEOREM 2. \mathfrak{Q}_N is a complete lattice.

Proof. \mathfrak{P}_N is a complete lattice and $\mathfrak{Q}_N \subset \mathfrak{P}_N$.

$$P^{(1)}=Q^{(1)}\in\mathfrak{Q}_N.$$

The greatest lower bound of $\{Q_i\}$ in \mathfrak{P}_N is $R \in \mathfrak{Q}_N$ (Lemma 1). Therefore, \mathfrak{Q}_N is a complete lattice.

REMARK. \mathfrak{Q}_N is not a sublattice of \mathfrak{P}_N . The following example shows that

\mathfrak{P}_N	\mathfrak{Q}_N			
$Q_1 \lor Q_2 \rightleftharpoons$	$Q_1 \lor Q_2$	(l.u.b. in \mathfrak{P}_N and	$d \ Q_N,$	respectively):

	Q_1			Q_2				P ==	۹ 2 Q₁ \	β_N / Q_2
b	с	е		b	с	е		b	с	e
<i>a'</i>	e	a"		<i>a'</i>	е	a″		a	e	a
е	<i>a</i> ″	d		е	<i>a'</i>	d		е	a	d

 Q_1 and Q_2 are q.p., but P is not a q.p. because $r_a r_a \cap r_d \neq \emptyset$ but $r_a r_a \notin r_d$.

36

The following examples show that unlike \mathfrak{P}_N , the lattice \mathfrak{Q}_N is not semimodular.

a) The lattice \mathfrak{Q}_2 :

b) A sublattice of \mathfrak{Q}_3 :

$$Q_{1} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \qquad Q_{2} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \qquad Q_{3} = \begin{bmatrix} 2 & 1 & 0 \\ 1 & 0 & 2 \\ 0 & 2 & 1 \end{bmatrix} \qquad Q_{4} = \begin{bmatrix} 2 & 1 & 0 \\ 1 & 0 & 3 \\ 0 & 3 & 2 \end{bmatrix}$$
$$Q_{5} = \begin{bmatrix} 2 & 1 & 0 \\ 1 & 0 & 4 \\ 0 & 4 & 3 \end{bmatrix} \qquad Q_{2} \qquad Q_{4}$$

The q.p. Q_i represent the cyclic groups Z_i for i = 1, 2, 3, 4, while Q_5 is a b.s. with multiplication not everywhere defined.

REMARK. Q_5 can be embedded in $Q \in \mathbb{Q}_4$ representing Z_5 :

	3	2	1	0
~	2	1	0	4
<i>Q</i> =	1	0	4	3
	0	4	3	2

DEFINITION. The b.s. M' is called a homomorphic image of the b.s. M under the mapping ϕ of M onto M', $\phi: |M| \to |M'|$, if

$$T_M \phi = T_M$$
, $(T_M \phi = \{(a\phi, b\phi, c\phi)\}_{(a,b,c) \in T_M})$.

 ϕ is called a *homomorphism*. One writes $M' = M\phi$ and, therefore, $T_M\phi = T_{M\phi}$. The homomorphic image of a single-valued b.s. is single-valued.

PROPOSITION 1. $Q \leq Q'$ (in \mathfrak{Q}_N) $\Rightarrow \exists \phi | Q' = Q\phi$ and ϕ is a homomorphism; i.e., Q' is a homomorphic image of Q. Conversely, every homomorphic image Q'of $Q(\in \mathfrak{Q}_N)$ is isomorphic to a q.p. of N^2 .

Proof. $Q \leq Q' \Rightarrow (q \in Q \Rightarrow \exists !q' \in Q' \text{ such that } q \subset q')$. Denote by ϕ the mapping of Q onto Q' such that $q\phi = q'$.

$$\begin{aligned} (q_1, q_2, q_3) &\in T_Q \Leftrightarrow q_1 q_2 \subset q_3 \Rightarrow q_1' q_2' \cap q_3' \neq \emptyset \Leftrightarrow q_1' q_2' \subset q_3' \Leftrightarrow (q_1', q_2', q_3') \in T_Q' \\ \text{i.e., } T_Q \phi \subset T_{Q'}. \\ (q_1', q_2', q_3') &\in T_{Q'} \Leftrightarrow q_1' q_2' \subset q_3' \Rightarrow \exists q_i \subset q_i' \ (i = 1, 2, 3) \ | \ q_1 q_2 \cap q_3 \neq \emptyset \Leftrightarrow \\ &\Leftrightarrow \exists (q_1, q_2, q_3) \in T_Q, \text{ i.e., } T_{Q'} \subset T_Q \phi. \end{aligned}$$

Therefore, $T_Q \phi = T_{Q'}$.

Conversely, let ϕ be a homomorphism of Q and denote $Q' = Q\phi$. To every $q' \in Q'$ construct the 1-1 correspondence $q' \leftrightarrow p = \bigcup q'\phi^{-1}$. The relations p form a partition P of N^2 .

$$p_1 p_2 \neq \emptyset \Rightarrow \exists q_1 \subset p_1, q_2 \subset p_2 | q_1 q_2 \neq \emptyset \Rightarrow \exists q_3 | (q_1, q_2, q_3) \in T_Q \Rightarrow$$
$$\Rightarrow (q'_1, q'_2, q'_3) \in T_Q'$$

For every $q_i \in q'_1 \phi^{-1}$, $q_j \in q'_2 \phi^{-1}$ such that $q_i q_j \neq \emptyset$, the corresponding $q_k \supset q_i q_j$ must be mapped by the homomorphism ϕ onto q'_3 , i.e., $q_k \in q'_3 \phi^{-1}$. Hence, $p_1 p_2 = (\bigcup q'_1 \phi^{-1}) (\bigcup q'_2 \phi^{-1}) \subset \bigcup q'_3 \phi^{-1} = p_3$ and P is a q.p. of N^2 .

At the same time one has shown that

$$p_1p_2 \neq \emptyset \Rightarrow (p_1, p_2, p_3) \in T_P \Rightarrow (q'_1, q'_2, q'_3) \in T_Q$$

and, conversely,

$$(q'_1, q'_2, q'_3) \in T_{Q'} \Rightarrow (p_1, p_2, p_3) \in T_P,$$

i.e., $(p_1, p_2, p_3) \in T_P \Leftrightarrow (q'_1, q'_2, q'_3) \in T_{Q'}$.

Therefore Q' is isomorphic to the q.p. P.

Various notions from group and loop theory can be transferred to q.p.; e.g., one can define a *direct product*.

$$Q_1 \times Q_2 \in \mathbb{Q}_{N_1 \times N_2} (Q_i \in \mathbb{Q}_{N_i}, i = 1, 2).$$

2. Quasiassociative loops.

A. Symmetric quasiregular partitions

The class \mathfrak{Q}_{sN} of the Q_s of N^2 is a complete lattice, sublattice of \mathfrak{Q}_N . The proof is similar to that for \mathfrak{Q}_N .

One verifies $Q_{sN_1} \times Q_{sN_2} = Q_{s,N_1 \times N_2}$.

A homomorphic image of a Q_s need not be a Q_s : every $Q \in \mathbb{Q}_N$ is a homomorphic image of $Q^{(0)} \in \mathbb{Q}_N$, which is clearly symmetric. (For examples of non-symmetric q.p. see p. 36).

For a $Q = \{q_i\}$ one defines its transpose $Q^* = \{q_i^{-1}\}$. Q^* is a q.p. anti-isomorphic to Q. Indeed, $q_i^{-1}q_j^{-1} \cap q_k^{-1} \neq \emptyset \Rightarrow q_jq_i \cap q_k \neq \emptyset \Rightarrow q_jq_i \subset q_k$ $\Rightarrow q_i^{-1}q_j^{-1} \subset q_k^{-1}$.

PROPOSITION 2. For every Q, $U = Q \cap Q^*$ is the least fine symmetric q.p. finer than Q.

Proof. a) U is a symmetric q.p.: As an intersection of two q.p. U is a q.p. and
$$u \in U \Rightarrow \exists i, j \mid u = q_i \cap q_j^{-1} \Rightarrow u^{-1} = q_i^{-1} \cap q_j \Rightarrow u^{-1} \in U.$$

b) Q is a homomorphic image of U (See Proposition 1.).

c) For every $S = S^*$, $U \leq S \leq Q$ implies also $U \leq S \leq Q^*$. Hence, $U \leq S \leq Q \cap Q^* = U \Rightarrow S = U$.

Every Q_{sc} must have a unique idempotent since every R_{sc} is an IP loop. On the other hand, one has the

PROPOSITION 3. An associative Q with a unique idempotent is symmetric.

Proof. Let *e* be the unique idempotent of the b.s. *Q*.

Assume q_a^{-1} intersects q_x and q_y , $x \neq y$. This implies xa = e = ay. By associativity

$$y = ey = (xa)y = x(ay) = xe = x$$

Hence, $q_a^{-1} \subset q_x$ and by (2) Q is symmetric.

This proves:

THEOREM 3. A complete associative q.p. with a unique idempotent element is a group.

B. The existence of complete symmetric non-associative q.p.

The symmetry of a Q_c implies the uniqueness of the idempotent element but not associativity, as can be seen from the following Q_{sc} , which is not a group[†]:

[†] In this connection, our thanks are due to Professor R. Artzy for drawing our attention to Cayley loops.

v	3	2	1	0	$(x_{ij})x_{ij} = 2x_{ij} = 0$
u	2	1	0	3	
y	1	0	3	2	(xu)x = 2x = v $x(ux) = x1 = y$
x	0	3	2	1	
0	x	y	v	u	

THEOREM 4. [3] To every group (finite or infinite) G of order $n \ge 5$ and to Z_4 there corresponds a Q_{sc} , which is not a group and which contains the group G as a normal subloop of index 2.

Proof. Case 1: There exists in G an element a of order ≥ 3 . Then three distinct elements of the form $a, a^{-1}, b \ne e$ can be found in G. One constructs the n.m.t. of G with the following initial section:

Add to this table a new marginal column and a row identical with this column except for one transposition, as e.g.:

This represents a Q_{sc} which is not associative:

a) Symmetry is maintained.

b) Completeness: All products of elements of G appear. An element x_i appearing in the first row multiplies from the left every x_j and the same element x_i appearing in the first column multiplies from the left all elements of G. Finally, any element $g \in G$ appears in every row (except the first) and thus multiplies from the left all elements of the first row, i.e., all x_i .

c) The table is a q.p.: the subtable of G is a q.p.; all multiplications involving x_i are performed only once except for the products of x_i with its symmetric elements which appear twice and are both equal e.

d) Non-associativity:

$$(x_1a)x_1 = x_2x_1 = a^{-1}$$

 $x_1(ax_1) = x_1x_4 = b$

Case 2. For every $g \in G$, $g^2 = e$. Then card $G \ge 5$ implies that G contains a subgroup of type $Z_2 \times Z_2 \times Z_2$: $\{a, b, c, d, f, h, k, e\}$. One constructs, as above, a Q_{sc} , e.g.:

 	·					
x ₇	1					е
<i>x</i> ₆	d	а	f	k	h	е
<i>x</i> 5	$\int f$	k	d	а	е	h
<i>x</i> ₄	c	h	b	е	а	k
<i>x</i> ₃	h	с	е	b	d	f
<i>x</i> ₂	b	e	с	h	k	а
<i>x</i> ₁	e	b	h	С	f	d
e	x4	x ₆	<i>x</i> ₅	<i>x</i> ₁	x ₃	$x_2 x_7 \cdots$

with

$$(x_4x_3)x_2 = hx_2 = x_3$$

 $x_4(x_3x_2) = x_4k = x_6$

In both cases G is a normal subloop of the loop represented by the Q_{sc} .

One can verify that for the groups Z_1 , Z_2 , Z_3 and V_4 these constructions give groups.

C. Quasiassociative loops.

DEFINITION. An IP loop that can be represented by a Q_{sc} will be termed a quasiassociative loop and denoted by QA.

LEMMA 2. (Condition I): An IP loop L is a QA if and only if it contains a subset $D = \{d_x, d_y, d_z, \cdots\}$ (called a generating column of L) such that for every triplet $d_x, d_y, d_z \in D$:

(7)
$$(d_x^{-1}d_y)(d_y^{-1}d_z) = d_x^{-1}d_z$$

and for every pair $f_1, f_2 \in L$ there exists a triplet $d_x, d_y, d_z \in D$ such that

(8)
$$f_1 = d_x^{-1} d_y, f_2 = d_x^{-1} d_z$$

Proof. Let Q_{sc} represent L. Denote by D the set of elements of the first column. Therefore, the elements of the first row form the set D^{-1} . The element of L on the place with coordinates (x; y) will be denoted $f_{x;y}$ and put $f_{1;y} = d_y$. Then:

(9)
$$f_{x;1} = d_x^{-1}; f_{1;1} = d_1 = e; f_{x;y} = f_{x;1}f_{1;y} = d_x^{-1}d_y$$

The Q_{sc} represents a loop and for each couple $f_1, f_2 \in L$ there exists an element $f_3 \in L$ such that $f_1 f_3 = f_2$, i.e., $f_1, f_2 \in L$ appear in a common column of the n.m.t., say $f_1 = f_{x;y}$ and $f_2 = f_{x;z}$. There exist, thus, $d_x, d_y, d_z \in D$ such that $f_1 = d_x^{-1} d_y$; $f_2 = d_x^{-1} d_z$ which proves (8).

By the definition of the multiplication in the Q_{sc} one has for every triplet $d_x, d_y, d_z \in D$:

$$(d_x^{-1} d_y)(d_y^{-1} d_z) = f_{x;y} f_{y;z} = f_{x;z} = d_x^{-1} d_z,$$

which proves (7).

Conversely, suppose that L has a generating column D. If $e \notin D$, $D \cup \{e\}$ too will satisfy (7) and (8). Assume, therefore, $e \in D$. Using (9) one constructs a n.m.t. with D as the first column and D^{-1} as the first row. All elements of the table are defined uniquely by:

$$f_{x;y} = d_x^{-1} d_y$$

The table is symmetric:

$$f_{y;x} = d_y^{-1} d_x = (d_x^{-1} d_y)^{-1} = f_{x;y}^{-1}$$

There are no inconsistencies in the table, because by (7):

Vol. 7, 1969

$$f_{x;y}f_{y;z} = (d_x^{-1}d_y)(d_y^{-1}d_z) = d_x^{-1}d_z = f_{x;z}$$

By (8) there exists, for every $f_1, f_2 \in L$ a triplet $d_x, d_y, d_z \in D$ such that

$$f_1 = d_x^{-1} d_y, \qquad f_2 = d_x^{-1} d_z$$

It follows that every couple of distinct elements of L appears at least in one column, i.e., that all products in L exist in the n.m.t.

Every group is a QA (D = G is permissible).

D can be used as an arbitrary column of the n. m. t. of QA; conversely, every column of such a table is a generating column, i.e., obeys (7) and (8).

D. IP loops which are not QA.

DEFINITION. Denote

(10)
$$C_r(a, b) = \{c \mid (ab)c = a(bc)\} (a, b, c \in L)$$

the set of elements associating at the right with the ordered pair (a; b).

LEMMA 3. (Condition II): Let L be an IP loop. If for some (a, b) $(a, b \in L)$, $C_r(a, b)$ does not contain a generating column, then L is not a QA.

Proof. For every r_a , $r_b \in Q_{sc}$ representing L

 $\exists x, y, z \in N$ such that $x/y \in r_a, y/z \in r_b$, hence

$$z \in |r_c \Rightarrow r_a r_b r_c \neq \emptyset \Rightarrow c \in C_r(a, b).$$

The z column in the Q_{sc} can thus contain elements of $C_r(a, b)$ only. Therefore, if $C_r(a, b)$ does not contain a generating column, i.e., a subset that can serve as a column of the n.m.t. of L, then L is not a QA.

COROLLARY. In every of the following cases the given IP loop L is not a QA:

a) $\exists a, b, f_1, f_2 \in L$ (there exists no $c_1, c_2, c_3 \in C_r(a, b)$ $| f_1 = c_3^{-1}c_1; f_2 = c_3^{-1}c_2$).

b) $\exists a, b, f \in L \ | \ (\text{there exists no } c_1, c_2 \in C_r(a, b) \ | \ f = c_1^{-1} c_2)$

(11) c) L' is a proper subloop of L and $\exists a, b \in L | C_r(a, b) \subset L'$

EXAMPLES: 1) Bruck [2, p. 33] constructs to each IP loop $L' = \{a, b, \dots\}$ an IP loop $L = L' \cup \overline{L'} = \{a, b, \dots; \overline{a}, \overline{b}, \dots\}$ with multiplication defined by:

(12)
$$ab = ab (in L'); a\bar{b} = \overline{a^{-1}b}; \quad \bar{b}a = \overline{ba^{-1}}; \quad \bar{a}\bar{b} = b^{-1}a^{-1}$$

Apply this construction to groups L' with elements a, b such that $ab \neq ba$. Then the corresponding L is not a QA. **Proof.** By (12): $(ab)\overline{c} = \overline{b^{-1}a^{-1}c}$; $a(b\overline{c}) = a\overline{b^{-1}c} = \overline{a^{-1}b^{-1}c}$. But $a^{-1}b^{-1}$ $\neq b^{-1}a^{-1}$, hence $(ab)\overline{c} \neq a(b\overline{c})$ for every \overline{c} , and $C_r(a, b) = L'$. According to (11) L is not a QA.

2) The smallest commutative Moufang loop (of order 81) is not a QA.

Proof. One uses its construction (see [1]) as the set M of the 81 quadruples $A = (a_1, a_2, a_3, a_4)$ of elements of the prime field modulo 3. The operation in M is defined by:

$$AB = C \Leftrightarrow \begin{cases} c_i = a_i + b_i & (i = 1, 2, 3) \\ c_4 = a_4 + b_4 + (a_3 - b_3) \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix}$$

One computes the "associator" $A(BC) - (AB)C = \begin{bmatrix} 0, 0, 0, - \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} \end{bmatrix}$.

One verifies that M is commutative and satisfies the Moufang identity (AB)(CA) = [A(BC)]A.

The subset $M' = \{(0, a_2, a_3, a_4)\}$ is a subloop of M, which is even a group. Let A = (0, 0, 1, 0), B = (0, 1, 0, 0). Then for any $X = (a_1, a_2, a_3, a_4)$ the associator

$$A(BX) - (AB)X = \left[\begin{array}{ccc} 0, 0, 0, - & \begin{vmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ a_1 & a_2 & a_3 \end{vmatrix} \right] = (0, 0, 0, a_1)$$

Hence, $X \in C_r(A, B) \Leftrightarrow X \in M'$ and by (11) M is not a QA.

The following properties are mentioned without proofs:

- 1. Every IP loop can be imbedded in a QA.
- 2. Every homomorphic image of a QA is a QA.
- 3. The direct product of two QA is a QA.

REFERENCES

1. G. Bol, Gewebe und Gruppen, Math. Annalen. 114 (1937), 414-431.

2. R. H. Bruck, Some results in the theory of quasigroups, Trans. Amer. Math. Soc. 55 (1944), 19-52.

3. A. Ginzburg, Systèmes multiplicatifs de relations. Boucles quasi associatives, C. R. Acad. Sci. Paris, 250 (1960), 1413-1416.

4. A. Cinzburg, Representation of groups by generalized normal multiplication tables, Canad. J. Math. 19 (1967), 774–791.

5. D. Tamari, a) Les images homomorphes des groupoides de Brandt et l'immersion des semi-groupes, C. R. Acad. Sci. Paris, 229 (1949), 1291–1293.

b) Représentations isomorphes par des systèmes de relations. Systèmes Associatifs, C. R. Acad. Sci. Paris, (1951), 1332-1334.

6. D. Tamari, Monoides préordonnés et chaînes de Malcev, Thesis, Paris, 1951. Part I. Contribution à la théorie des monoides reliés (unpublished stencil, published in part in Bull. Soc. Math. France, 82 (1954), 53-96).

7. D. Tamari, "Near-groups" as generalized normal multiplication tables, Notices Amer. Math. Soc. 7 (1960), 77.

8. D. Tamari and A. Ginzburg, Representation of multiplicative systems by families of binary relations (I), J. Lond. Math. Soc. 37 (1962), 410-423.

9. D. Tamari and A. Ginzburg Representation of binary systems by families of binary relations, Israel J. Math. 7 (1969), 21-32.

Technion—Israel Institute of Technology, Haifa State University of New York at Buffalo, Buffalo, New York