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ABSTRACT 

Binary systems defined by families of binary relations satisfying special 
properties are studied. The existence of so called near-groups or quasiassocia- 
tive loops is established. 

Introduction. Notations follow those in the preceding papers [8, 9]. Here 

particular binary systems defined by families of binary relations with their general- 

ized multiplication are studied. 

§1 treats symmetric f.o.b.r., partitions of N x N (all r c N x N), and f.o.b.r. 

satisfying certain combinations of conditions determining special categories 

of b.s. §2 establishes the existence of so called near-groups ['7] or quasiassociative 

loops 13] which are not groups, although they are defined by a slight modification 

['5, 6] of Brandt's well-known normal multiplication table (n.m.t.) for groups. 

The principal results of this paper were published without proof earlier 1"3]. 

Applications to groups are studied in 14]. 

1. Symmetric families of disjoint relations and quasiregular partitions. 

A. General properties 

All R are assumed to satisfy the conditions 

rlr  2 ~  J ~  3 r a ~ R [ r l r  2 e r a  

(1) 
r 1 ~;~ r 2 =~ r 1 0  r 2 ----- ~ ( r l ,  r 2 E R) 

Every such R is single valued and satisfies 

1. r a ~ d N ~ J ~ = ~ a 2 = a  

2. a) 

b) 
3. a) 

b) 

/r= n / ( r  e n dN) # ~ :* ea = a 

rfl ~ (r e ~ d D / #  ~ ~ ae = a 

x/x, x/y ~ rl, u/x E r2 :~ u/y ~ r~ 

x/x,  y /x  ~ rl, x/u e r 2 ~ y/u ~ r 2 
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4. In a n.m.t, with two identical couples of  corresponding rows and columns 

one couple can be deleted, without change of the b.s. 

B. S y m m e t r i c  sys tems  o f  relat ions R~ 

DEVINmON. R is s y m m e t r i c  and denoted R~, if 

r ~ R :~ r -  1 ~ R (symmetry). 

By (1) it suffices to require 

r e R ~ ( 3 r l e R ) :  r -1 c r 1. (2) 

One denotes 

- i  
r a ----- ra_,. 

Clearly (a -1) -1  = a, a a - 1  is always defined, and 

aa -1 = e => e 2 = e, a l i e  = a -1, ea = a; 

in particular, R, has at least one idempotent element. 

In R~, A.3 generalizes to 

x[y,  x / z  e r l ,  u[y ~ r2 => u[z ~ r 2 

(3) x / z ,  y]z  e r l ,  x /u  ~ r2 => y]u e r 2 

This and property A.4 imply that all repetitions of  elements in a row or a column 

of  a n.m.t, of  R, can be eliminated; without limitation of  generality one may 

restrict oneself to Rs of 1-1 relations. 

Further simple properties of an Rs: 

a 2 = a ~ r , ~ d n ~ j ,  a - l = a ;  

b, b a = b ~ a  2 = a , b - l b = a ;  3b ,  a b = b ~ a  2 = a , b b -  ~ = a ;  

a / b e C ,  a 2 = a :*.ab = b; b l a n C ,  a 2 = a => ba = b; 

a/b ~ C, a 2 = a, b 2 = b => a = b. 

C. S y m m e t r i c  complete  sys tems  o f  relat ions 

R c will denote a complete  R,  i.e., 

r 1, r 2 ~ Rc ~ r l r  2 ~ ~ .  

An R c which is also an R~ will be denoted by Rsc. 

TI-IEOI~M 1. Every  Rs~ is an IP loop (loop with the inverse proper ty) ;  con- 

versely,  every IP loop can be represented by an R~ .  
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Proof. In an R~, each of the six equalities 

(4) ab = c, a - l c  = b, cb -1 = a, b - l a  -1 = c -1,  c - l a  = b - i ,  bc - I  = a -1 

implies the other five, as is obvious from the following extraction from the n.m.t. 

/ 
c b /  

a J b  -1 
/ 

/ a-1 c - I  

Consequently, R~ is a quasigroup. 

By the properties in the previous section, R,c has an identity 1 (r 1 = ds) and 
aa -1 = a - l a  -- 1. 

Thus R~ is a loop. 

Moreover, in an R, 

(5) a/b e C :~ a -1 (ab )  = b; b/a e C :*. (ba)a -1 = b 

In R~,, ab and ba exist. (5) is thus satisfied for all a and b and the axioms of an 

I P  loop are fulfilled. 

Conversely, let L be an ]P loop with identity 1. For each (a, b, c ) e  TL(a, b, c #  1) 

construct the "subtable" 

c b 1 

a 1 b -1 

1 a -1 c - l  

The combination of all such subtables (e.g., by juxtaposition) into a larger 

table with the 1-s forming the diagonal, is a n.m.t, of an R,c representing L. 

D. Quasiregular  par t i t ions  

DEn~mON. An R constituting a partition of N x N (in brief N 2) will be 

called a quas iregular  par t i t ion  (q.p.) Q = QN of N 2. 

One denotes Qc, Qs, and Qs,, respectively, a complete a symmetric, and a sym- 

metric and complete q.p. 

The simplest examples of q.p. are: 

Q(O) _ every element of N 2 is a relation. 

Q(1) __ the whole set N 2 is one relation. 

Every Q contains idempotent elements, satisfies (3), and 
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(6) 3 b [ b a = b = ~ a 2 = a ;  3 b l a b = b = ~ a Z = a ; a 2 = a = ~ r a t ~ d N ¢ ; Z L  

The lattice of  the q.p. 

The class ~N of all Q o f N  2 constitutes a partially ordered system under Q1 < Q2, 

Q1 finer than Q2, induced from the usual ordering of the class ~3N of all partitions 

of N 2. 

Q(O) = p¢O) is the smallest and Q(t) = Pt~) the greatest member of £~N as well 

as of ~3 N. 

LEMMA 1. The greatest lower bound in ~3N of  a f ami l y  of  q.p. R = /~ (Qi}~Et 

is a q.p. 

Proof. R = {r j} is a partition. In order to show that this partition is quasi- 

regular one has to prove that r~r2 n r 3 ~ ~ => rxr z c r3. 

Each rk = (']i ~ {qik (k = 1, 2, 3) where qik e Q~ is the relation of  Q~ containing rk. 

Therefore, for all i: 

r l r  2 c qixqi2 

r lr2 ~ ra ~ f~J :~ qilqi2 t~ qia ~ f~ ~ qilqi2 c qla :~ 

rlr2 ~ N qi3 ---- r3. 
t e l  

THEOREM 2. £~N is a complete lattice. 

P r o o f .  ~3N is a complete lattice and £~N C ~3~. 

p(i) = Qfl) e~N.  

The greatest lower bound of {Qi} in ~N is R e ~  N (Lemma 1). Therefore, ~N is a 

complete lattice. 

REMARK. ~N is not a sublattice of ~N. The following example shows that 

~N 
Q1 V Q2 

Q1 
, b c e 

~ N  

Q1 V Qz (1.u.b. in ~N and ~N, respectively): 

Q2 P = Q1 V Q2 

b c e b c e 

a' e a" a' e a" a e a 

e a" d e a' d e a d 

Q1 and Q2 are q.p., but P is not a q.p. because r.ro tn rd ~ ~ but rar,¢rd. 
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The following examples show that unlike ~N, the lattice ~N is not semimodular. 

a) The lattice ~2:  

b) A sublattice of ~a :  

QI 

0 0 0 
0 0 0 
0 0 0 

Q2 

0 1 0 
1 0 1 
0 1 0 

Q3 

2 1 0  
1 0 2  Q4= 
0 2 1  

Ji l° 0 3 
3 2 

2 1 0 /QI \  
Q5 = 1 o 4 Q2 

Z Q3 0 4 3  Q.4 / 

Q5 

The q.p. Q~ represent the cyclic groups Z~ for i = 1,2,3,4, while Q5 is a b.s. 

with multiplication not everywhere defined. 

REMARK. Q5 can be embedded in Q ~£~4 representing Zs: 

3 2 11o 
2 1 0 4 

Q =  1 0 4 3-  
0 4 3 2 

DEFINITION. The b.s. M' is called a homomorphic image of the b.s. M under 

the mapping ~b of M onto M', tk: I M[ ~ [M' I, if 
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:r~,ob = rM, (T,~Ob = {(aob, bob, cob)}~o,.c~ o T~,). 

ob is called a homomorphism. One writes M'  = Mob and, therefore, TMOb = Tue,. 

The homomorphic image of a single-valued b.s. is single-valued. 

PROPOSITION 1. Q < Q' (in ~N) :~ 3ObIQ' = QOb and ob is a homomorphism; 

i.e., Q' is a homomorphic image of Q. Conversely, every homomorphic image Q' 

of Q( ~ s )  is isomorphic to a q.p. of N 2. 

Proof. Q < Q' :¢- (q ~ Q =~ 3!q' ~ Q' such that q c q'). Denote by q5 the 

mapping of Q onto Q' such that qob = q'. 

(ql, qz, qa) ~ Tt2"~"qlq2 = qa => qlq2 (3q~ ~ ~¢>q~q~ ~ q~c>(ql" q:z,q'a)~ Tq,, 

i.e., reob ~ re , .  

(ql, ' . . . . .  ) l  ' q2, qa)E TQ,c~qlq2 c qa => 3q~ c qi (i = 1,2,3 qlq2 Nqa ~ ~¢> 

"~" 3(ql, q2, q3) ~ TQ, i.e., TQ, ~ TQOb. 

Therefore, TQOb = To,. 

Conversely, let ob be a homomorphism of Q and denote Q' = QOb. To every 

q 'eQ'  construct the 1-1 correspondence q'~--.p= L)q'ob -~. The relations p 

form a partition P of N 2. 

PIP2 ~ ~J ::~ ~q, = Pl, q2 ~ P2 ] q lq2 ~ ,~ ~" ~lq3 ](q~, q~, q3) e TQ => 

=> (q~, q~, q~) E TQ, 

For every qieq'lob -~, qjEq~ob -~ such that q i q ~ ,  the corresponding 

qk -~ qiql must be mapped by the homomorphism ob onto q~, i.e., q, ~ q~ob- ~ 

Hence, P~Pz = ( ~  q'~ob -~) ( u  q'2ob -~) ~ tdq~ob -~ = pa and P is a q.p. of  N*. 

At the same time one has shown that 

p~p~ ~ ~ ~ ( p .  p~, p~) ~ r~ ~ (q~, q~, qD ~ r~, 

and, conversely, 

(q~, q~, q~) ~ Tq, ~ (p~, P2, Pa) ~ T,, 

i.e., (p, ,  p~, pa) ~ Te ¢> (q'~, q'~, q~) ~ TQ,. 

Therefore Q' is isomorphic to the q.p.P.  

Various notions from group and loop theory can be transferred to q.p.; e.g., 

one can define a direct product. 

QI x Q2e5~slxs2 ( Q , ~ , ,  i = 1,2). 
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2. Quasiassoeiative loops. 

A.  S y m m e t r i c  quasiregular  part i t ions 

The class £2ss of the Qs of N 2 is a complete lattice, sublattice of ~N. The 

proof is similar to that for ~s .  

One verifies Q~sl x Q~s2 = Q~,~v~×s2. 

A homomorphic image of a Q~ need not be a Q~: every Q eg~s is a homomorphic 

image of QtO) e ~N, which is clearly symmetric. (For examples of non-symmetric 

q.p. see p. 36). 

For a Q = {qi} one defines its transpose Q* = {q~" 1 }. Q. is a q.p. anti-isomor- 

phic to Q. Indeed, q71q] "1 ( 3 q ~  1 ~ j~J ~ qjqi ~ q~ ~ J~ =~ q j q j ~ q k  

:~ q : l q f l  ~ qZ1. 

PROPOSITION 2. For  every Q, U = Qc3 Q* is the least f ine  s ymmet r i c  q.p. 

f iner  than Q. 

Proof. a) U is a symmetric q.p. : As an intersection of two q.p. U is a q.p. and 

u e  U =~ ~i, j l u = qi N q-~l =:. u -1 = q~-l r3 q~ :~u-1 ~ U. 

b) Q is a homomorphic image of U (See Proposition 1.). 

c) For every S = S * ,  U < S < Q  implies also U ~ S _ ~  Q*. Hence, 

U < S  < Q n Q *  = U = ~ S =  U. 

Every Q,~ must have a unique idempotent since every R,¢ is an IP loop. 

On the other hand, one has the 

PROPOSmON 3. An associative Q with a unique idempotent  is symmetr ic .  

Proof. Let e be the unique idempotent of the b.s.Q. 

Assume q~" 1 intersects q, and q ,  x ~ y. This implies xa  = e = ay. By as- 

sociativity 
y = ey  = (xa)y  = x (ay )  = xe  = x.  

Hence, q," 1 = q, and by (2) Q is symmetric. 
This proves: 

THEOREM 3. A complete associative q.p. with a unique idempotent  e lement  

is a group. 

B. T h e  exis tence o f  complete  s y m m e t r i c  non-associative q.p. 

The symmetry of a Q~ implies the uniqueness of the idempotent element but not 

associativity, as can be seen from the following Q,,, which is not a groupt: 

1" In this connection, our thanks are due to Professor R. Artzy for drawing our attention 
to Cayley loops. 
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o 3 2 1 0 

u 2 1 0 3 

y 1 0 3 2 

x 0 3 2 1 

0 x y v u 

( xu )x  = 2x  = v 

x ( u x )  = x l  = y 

THEOREM 4. [3] To every group ( f i n i t e  or infinite) G o f  order n > 5 and to 

Z4 there corresponds a Qsc, which is not a group and which contains the group  

G as a normal  subloop o f  index  2. 

Proof. Case 1: There exists in G an element a of  order > 3. Then three 

distinct elements of the form a, a- ~, b( # e) can be found in G. One constructs 

the n.m.t, of  G with the following initial section: 

b 

a - I  

a 

e 

e 

a - 1  

Add to this table a new marginal column and a row identical with this column 

except for one transposition, as e.g.: 

I 

x6 I 

x5 [ 
I 

x4 I b  

X 3 [ a - 1  
I 

x2 I a 

Xl I e 
Xl 

e 

e 

a - l a  

X2 X4 X3 

e 

e 

X5 X 6 . . .  
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This represents a Qsc which is not associative: 

a) Symmetry is maintained. 

b) Completeness: All products of elements of G appear. An element x~ appear- 

ing in the first row multiplies from the left every xj and the same element x~ 

appearing in the first column multiplies from the left all elements of G. Finally, 

any element g e G appears in every row (except the first) and thus multiplies 

from the left all elements of the first row, i.e., all x~. 

c) The table is a q.p. : the subtable of G is a q.p.; all multiplications involving 

x i are performed only once except for the products ofx~ with its symmetric elements 

which appear twice and are both equal e. 

d) Non-associativity: 

( x la )x  I = x2x 1 = a - t  

x l ( a x l )  = x i x  4 = b 

Case 2. For every g~ G, g 2 =  e. Then card G > 5 implies that G contains 

a subgroup of type Z2 x Z2 x Z2: {a, b, c, d , f ,  h, k, e}. One constructs, as 

above, a Q~, e.g.: 

X 7 

X6 

X5 

X4 

X3 

X2 

X1 

e 

d a f k h e 

f k d a e h 

c h b e a k 

h c e b d f 

b e c h k a 

e b h c f d 

e X¢ X 6 X 5 X 1 X 3 X 2 X 7 . ."  

with 

(x4x3)x2 = hx2 = x3 

X4(X3X2) = x 4 k  ~--. X 6 

In both cases G is a normal subloop of the loop represented by the Q,c. 



42 A. GINZBURG AND D. TAMARI Israel J. Math., 

One can verify that for the groups Z1, Z2, Z3 and 1I, these constructions give 

groups. 

C. Quasiassociative loops. 

DEIqNmON. An IP loop that can be represented by a Qsc will be termed a qua- 

siassociative loop and denoted by QA. 

LEMMA 2. (Condition I): An IP loop L is a QA if and only if it contains 

a subset D = {d~,dy, dz, . . .  } (called a generating column of L) such that 

for  every triplet dx, dy, d z ~ D: 

(7) (dZ ld,)(d-~ 1 dz) = dZ  Id~ 

and for  every pair f l , f 2  e L  there exists a triplet d~, dy, dz~D such that 

(8) A = d;ldy,  f2 = d'~ ld,  

Proof. Let Qsc represent L. Denote by D the set of elements ofthefirstcolumn. 

Therefore, the elements of the first row form the set D- t .  The element of L on 

the place with coordinates (x; y) will be denoted f~;y and put fl;y = dr  Then: 

(9) f~;1 = d~"l;A;, = dt = e; f~;, =f~;1A;, = dZ ld, 

The Qsc represents a loop and for each couple f~,f2 ~ L there exists an element 

f a ~ L  such that f l f a  =f2,  i.e., f l , f 2 e L  appear in a common column of the 

n.m.t., say f l  =fx;y and f2 =fx;z. There exist, thus,dx, dy, d zeD such that 

f l  = d~idy; f2 = d-~ 1 dz which proves (8). 

By the definition of the multiplication in the Qsc one has for every triplet 

dx, dy, d~ ~ D : 

(d-~ 1 dr)(d- ldz ) = fx;yf,;= = f,,;= = d-~ 1 d , ,  

which proves (7). 

Conversely, suppose that L has a generating column D. If e ~ D, D ~3 {e} too 

will satisfy (7) and (8). Assume, therefore, e ~ D. Using (9) one constructs a n.m.t. 

with D as the first column and D- t as the first row. All elements of the table are 

defined uniquely by: 

The table is symmetric: 

f~;y = d 7  ld, 

A~x = d ;  ~ dx = ( d ;  1 d , ) - I  = f2,~ 

There are no inconsistencies in the table, because by (7): 
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fx;yfy;z = (dZ~dy)(d-; ~ dz) = dZtdz = f ~ a  

By (8) there exists, for every f l , f 2  6 L a triplet dx, dy, d~ e D such that 

f* = dxldy,  f2 = d~~d~ 

It follows that every couple of  distinct elements of  L appears at least in one 

column, i.e., that all products in L exist in the n.m.t. 

Every group is a QA (D = G is permissible). 

D can be used as an arbitrary column of the n. m. t. of  QA; conversely, every 
column of such a table is a generating column, i.e., obeys (7) and (8). 

D. IP loops which are not QA. 

DEFINITION. Denote 

(10) C,(a, b) = {c I (ab)c = a(bc)} (a, b, c e L)  

the set of elements associating at the right with the ordered pair (a; b). 

L E n A  3. (Condition II): Let  L be an IP loop. I f  for  some (a, b) (a, b ~ L), 

C,(a, b) does not contain a generating column, then L is not a QA. 

Proof. For every ra, rb ~ Q,c representing L 

3x, y, z e N such that x/y  e r a, y /z  ~ r~, hence 

z ~/rc ~ rarbr ~ # ~ => c ~ C, (a, b). 

The z column in the Qs~ can thus contain elements of Cr(a, b) only. Therefore, 

if C,(a, b) does not contain a generating column, i.e., a subset that can serve as a 

column of the n.m.t, of L, then L is not a QA. 

COROLLARY. In every of the fol lowing cases the given IP loop L is not a QA: 

a) 3a, b , f , , f2  ~ L l (there exists no cl, c2, ca e C,(a, b) I f ,  = c a lcl ; f2 = ca lc2). 

b) 3a, b, f e  L ] (there existsno cl, c2 E C,(a, b) I f  = c71 c2) 

(11) c) L' is a proper subloop of  L and 3a, b e L l  C,(a, b) ~ L' 

EXAMPLES: 1) Bruck [2, p. 33] constructs to each IP loop L' = {a, b, ...} 

an IP loop L =  L' U L ~ = {a, b, ... ;d, b, ...} with multiplication defined by: 

(12) ab = ab( in  L'); ab = a-Xb; [~a = ba-1; db = b - t  a - t  

Apply this construction to groups L' with elements a, b such that ab ~ ba. 

Then the corresponding L is not a QA. 
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Proof. By (12): (ab)~ = b -1 a - l c ;  a(b#) = a b - l c  = a - l b  -1 c. But a -1 b -1 

# b - l a - t ,  hence ( a b ) ~ #  a(b?) for every ?, and C,(a, b ) =  U. According to 

(11) L is not a QA. 

2) T h e  smallest  commutat ive  M o u f a n g  loop (of  order 81) is not a QA. 

Proof. One uses its construction (see [1]) as the set M of the 81 quadruples 

A = (al,  a 2, a3, a4) of  elements of the prime field modulo 3. The operation in 

M is defined by: 

A B  = C ~ ,  I ci = ai + bi (i = 1, 2, 3) 

( C4 = a ' + b ' + ( a a - b s ) b :  ab: " 

One computes the "associator" A(BC)  - (AB)C  = I I al a2 a3 
0 , 0 , 0 ,  - bl b2 b3 

C 1 C 2 C 3 

1 

l 
One verifies that M is commutative and satisfies the Moufang identity (AB)(CA)  

= [A(BC)]A.  

The subset M'  = {(0, a2, a3, a4)} is a subloop of M, which is even a group. 

Let A = (0, 0, 1, 0), B = (0, l, 0, 0). Then for any X = (al,  az, a3, a , )  the associator 

a ( B X )  - (AB)X = O, O, O, - 

0 0  
0 1 0 

at  a2 a3 

= (0, 0, 0, a 0  

Hence, X e C r ( A , B ) ~ X e M '  and by (11) M is not a QA. 

The following properties are mentioned without proofs: 

1. Every IP loop can be imbedded in a QA. 

2. Every homomorphic image of  a QA is a QA. 

3. The direct product of  two QA is a QA. 
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